

Subway Line 2 Wheel Flats Status Update

Toronto Transit Board Meeting July 10, 2019

Richard Wong – Acting Chief of Vehicles Fort Monaco – Chief of Infrastructure

Wheel Flats

Flat Spot

- Wheel Flats Have A "Thumping" Sound & Generates Vibration
- Larger The Flat:
 - > Louder the Thumping Sound
 - > Greater the Vibration

Wheel Flats

- Expected In Rail Industry
- Average Backlog
 - 15 Cars or 2.5 Trains (4% of Total Fleet)

- More Common In Autumn (Seasonal Trend)
- Increase in Backlog
 - 30 Cars or 5 Trains (8% of Total Fleet)

LINE 2 SERVICE REQUIREMENTS

- 45 Trains Required for Service
- October 2018 90% of Fleet had Moderate to Severe Flats
- Impact to Service & to Community

Impact To Community

- Starting in October 2018, an **extraordinary increase** in subway noise and vibration complaints received across Line 2.
- This situation was not limited to one specific section of the subway network.
- Wheel flats were not a prominent source of complaints prior to October 2018.

Impact To Community

6 Wards Affected By Noise & Vibration
More than 200 Complaints Received By Affected Residents

Communications with Residents

- Some residents welcomed or requested a visit by TTC staff to observe subway operations in their home.
- Wheel flat information was posted on the TTC website.
- Updates including a fact sheet and overview PDF was also posted online.
- Updates were provided to affected residents and local councillors.

Flats - Causes of Wheel Flats

- Metal on metal sliding action:
 - > Low traction rail conditions and
 - Emergency Brake (EB) application

Loss of traction and no wheel rotation (EB Brake) will results in wheel sliding along the track to create flat spots

Causes of Low Traction

• Wet rail, leaves, snow, and over-lubrication can cause areas of low traction.

Causes of Emergency Brake (EB) Applications

- Operator Induced
- Speed Control System (SCS) Induced:
 - Spin/Slide (Similar to traction control in automobiles)
 - Over Speed (Similar to speed governor in automobiles)
 - Signal Violation (Similar to collision avoidance system in automobiles)

Flats - Wheel Monitoring System

AURA Wheel Flat Detection System

- Installed on Line 2 in 2012 and Line 1 in 2015
- Early warning detection system
- AURA identifies axles and color codes according to severity of wheel flat (RED = Most Severe)
- Trains with red flats are the most severe and are removed from service

Repairs for Wheel Flats

- Wheels are 'machined true' to remove flats and return them to round
- Maximum of 6 axles (12 wheels) can be cut per 8 hr shift
- New wheel diameter = 28"
- Condemnation diameter = 25.375"
- Average Life = 4 Years (T1 Fleet)
- TTC has 2 wheel turning machines for subway vehicles located at Greenwood Carhouse and Wilson Carhouse

Wheel Cutting Machine

Investigation

- Investigation commenced January 2019
- Multi-disciplined investigative team due to wheel/track/operator interface
- Departments involved:
 - Rail Cars & Shops (Vehicle Maintenance)
 - Subway Infrastructure (Track)
 - Subway Transportation (Operators)
- Lead Investigator National Research Council of Canada (NRCC)
- Investigation:
 - Data driven
 - > Inspection of assets
 - Process of elimination

Investigation

Vehicles:

- ✓ Inspection of wheels
- ✓ Inspection of brake pads
- ✓ Testing of acceleration & brake rates
- ✓ Review of data for propulsion faults
- ✓ Review of data for EB applications

Track:

- ✓ Inspection of rail
- ✓ Inspection of way side lubricators
- ✓ Inspection of speed control system

Action Items

Vehicles:

- ✓ Investigation re-design of master controller
- ✓ Replacement of brake pads
- ✓ Installation of vibration sensors on bogies/trucks

Operators:

- ✓ Supervisor audits
- ✓ Reminder campaigns

Track:

- ✓ Cleaning of rail
- ✓ Turning off of lubricators to eliminate grease as significant contributor
- ✓ Testing of top of rail friction modifier
- ✓ Added SCS and Un-Equipped Mode (UEM) tags
- ✓ Implementation restricted speed zones

Other:

- ✓ Consulted with peer agencies
- ✓ Hired Network Rail to assist with investigation

Observations & Results – EB Applications

RED FLAT CARS BY EB EVENTS, APRIL 2019

- EB applications monitored and reduced on some SCS codes
- Subway Infrastructure Engineering investigating potential improvements to SCS software

Observations & Results _ Wheel Flats

- Downward trend in wheel flats – 16 cars as of July 9, 2019
- No trains in service with moderate or severe flats

Observations & Results _ Vibration from Trains on Line 2

Observations & Results - Community

Number of Recorded Wheel Flat Complaints since October 2018 (Total 206)

Action Plan

- Continue with action items already implemented
 - > Testing of brake pad materials
 - Installation of mobile sensors on bogies/trucks for additional data collection
 - Cleaning of rail
 - > Replacement of lubricators and testing of top of rail friction modifiers
 - > Operate in accordance to weather conditions
 - > Add additional SCS tags
- Evaluate feasibility of recommended action items provided by NRC
- Continue investigating potential design improvements to:
 - Master Controller
 - Speed Control System

Questions?

